
Judul Proyek: Sistem Manajemen Database Stugether (Kolaborasi Tugas
Kelompok, Berbagi Catatan Dan Forum Diskusi + Reminder)

Mata Kuliah: Manajemen Basis Data Client Server
Dosen Pengampu: Donny Sanjaya, M.Kom.

LAPORAN KONTRIBUSI INDIVIDU

Nama Anggota: Muhammad Farid Yamin

NIM: 2305181063

Kelompok: 2

Program Studi: Teknologi Rekayasa Perangkat Lunak

Politeknik Negeri Medan

2025

BAB I: PENDAHULUAN

1.1​ Deskripsi Proyek

a.​ Nama Sistem

Stugether - Student Together Collaboration Platform

b.​ Tujuan Sistem

Stugether dibangun sebagai ruang kolaborasi yang aman, rapi, dan terstruktur untuk
mahasiswa, tempat berkumpulnya forum akademik, komunitas, proyek kelompok, hingga task
management sederhana. Sistem ini memudahkan mahasiswa dalam:

●​ Bergabung ke forum melalui kode undangan
●​ Berdiskusi
●​ Berbagi materi
●​ Mengatur kolaborasi tim

c.​ Ruang Lingkup

●​ UI/UX Design (mockup design)
●​ Frontend (responsive layout design & API connection plan)
●​ Backend (API CI4, routing, controller, model, business logic)
●​ Database (desain tabel, relasi, migration, seeder)
●​ OpenAPI Documentation (rencana integrasi)

1.2​ Peran dan Tanggung Jawab Individu

a.​ Posisi Dalam Tim

Database Designer dan Backend Developer

b.​ Deskripsi Tugas yang Diampu
●​ Merancang ERD utama untuk sistem
●​ Mendesain tabel users, forums, dan rencana tabel forum_members
●​ Membuat struktur tabel MySQL
●​ Menentukan tipe data, constraint, dan relasi
●​ Membuat migration CI4 untuk implementasi database
●​ Mendesain dan mengimplementasikan API pada CodeIgniter 4
●​ Membuat routing, controller, dan model
●​ Implementasi proses pembuatan forum & login/register
●​ Validasi input dan business logic
●​ Menentukan struktur dokumentasi API (OpenAPI)

c.​ Tools dan Teknologi
●​ Database: MySQL
●​ Framework Backend: CodeIgniter 4
●​ Bahasa: PHP
●​ Tools: Cursor, Git, phpMyAdmin
●​ Dokumentasi: Swagger (OpenAPI)

BAB II: DESAIN SISTEM

2.1​ Gambaran Umum Sistem

Stugether adalah sistem yang menyatukan kolaborasi mahasiswa melalui forum
terstruktur. User dapat membuat forum, mengundang anggota melalui kode unik, serta
mengelola informasi, tugas, dan diskusi.

Fitur Utama:

●​ Registrasi & login user
●​ Manajemen forum
●​ Bergabung melalui kode undangan
●​ Kategori forum: akademik, proyek, komunitas, lainnya
●​ Manajemen anggota

2.2​ Desain yang Menjadi Tanggung Jawab

a.​ ERD (Entity Relationship Diagram)

b.​ Struktur Tabel Database

anggota_forum:

discussions:

forums:

kanbans:

media:

notes:

reminders:

users:

user_forum_seen:

c.​ Relasi Antar Tabel

Relasi Tipe Penjelasan Singkat

Users → Forums 1:M User membuat banyak forum

Users ↔ Forums via Anggota Forum M:M User bisa join banyak forum

Forums → Kanbans 1:M Forum punya banyak task

Kanbans → Reminders 1:1 Satu kanban satu reminder

Forums → Discussions 1:M Forum punya banyak diskusi

Discussions → Discussions Hierarki Thread komentar

Forums → Notes 1:M Forum punya banyak catatan

Media → (Users, Forums) 1:M Media terhubung ke forum
dan user

Media → Anggota Forum Composite FK Upload hanya untuk anggota

d.​ Arsitektur Sistem
●​ CI4 modular structure
●​ Controllers → Models → Database
●​ Routing sistem RESTful
●​ Rencana dokumentasi memakai Swagger

e.​ Struktur API Endpoint

Authentication:

Endpoint Method Deskripsi

/auth/register POST Registrasi user baru

/auth/login POST Login user dan mendapatkan JWT token

/auth/logout POST Logout user (stateless)

/auth/me GET Mendapatkan informasi user yang sedang login

Users:

Endpoint Method Deskripsi

/users/{id} GET Menampilkan detail user berdasarkan ID

/users/{id} PUT Update profil user (hanya user sendiri)

Forums:

Endpoint Method Deskripsi

/forums POST Membuat forum baru

/forums GET Mendapatkan daftar forum

/forums/recommended GET Mendapatkan daftar forum yang
direkomendasikan

/forums/{id} GET Menampilkan detail forum berdasarkan
ID

/forums/{id} PATCH Update forum (hanya admin forum)

/forums/{id} DELETE Hapus forum (hanya admin forum)

Forum Members:

Endpoint Method Deskripsi

/forums/{id}/join POST Bergabung ke dalam forum

/forums/{id}/leave POST Keluar dari forum (hanya
anggota forum)

/forums/{id}/members GET Mendapatkan daftar
anggota forum

/forums/{id}/members/{member_id} PATCH Update status anggota
forum (hanya admin forum)

Tasks (Kanban):

Endpoint Method Deskripsi

/forums/{id}/tasks POST Membuat task baru di forum
(hanya anggota forum)

/forums/{id}/tasks GET Mendapatkan daftar task di forum

/tasks/{id} GET Menampilkan detail task
berdasarkan ID

/tasks/{id} PATCH Update task

/tasks/{id} DELETE Hapus task

/tasks/{id}/attachments POST Upload attachment ke task (hanya
anggota forum)

Reminders:

Endpoint Method Deskripsi

/tasks/{id}/reminder POST Membuat reminder untuk task

/reminders GET Mendapatkan daftar reminder user

/reminders/{id} DELETE Hapus reminder

Discussions:

Endpoint Method Deskripsi

/forums/{id}/discussions POST Membuat diskusi baru di forum
(hanya anggota forum)

/discussions/{id}/replies POST Membalas diskusi (hanya
anggota forum)

/forums/{id}/discussions GET Mendapatkan daftar diskusi di
forum

/discussions/{id} GET Menampilkan detail diskusi
berdasarkan ID

/discussions/{id} PATCH Update diskusi

/discussions/{id} DELETE Hapus diskusi

Notes:

Endpoint Method Deskripsi

/forums/{id}/notes POST Membuat catatan baru di forum (hanya
anggota forum)

/forums/{id}/notes GET Mendapatkan daftar catatan di forum

/notes/{id} GET Menampilkan detail catatan
berdasarkan ID

/notes/{id} PATCH Update catatan

/notes/{id} DELETE Hapus catatan

Media:

Endpoint Method Deskripsi

/media POST Upload media/file

/forums/{id}/media GET Mendapatkan daftar media di forum

/media/{id} GET Menampilkan detail media berdasarkan ID

/media/{id} DELETE Hapus media

Search:

Endpoint Method Deskripsi

/search GET Pencarian global (forum, task, discussion, notes)

Notifications:

Endpoint Method Deskripsi

/notifications GET Mendapatkan daftar notifikasi user

Documentation:

Endpoint Method Deskripsi

/docs GET Dokumentasi API (OpenAPI)

f.​ Alur Logika Bisnis

●​ Validasi input
●​ Generate kode undangan otomatis
●​ Cek duplikasi email
●​ Relasi admin_id ke tabel forum

BAB III: IMPLEMENTASI

3.1​ Daftar Pekerjaan yang Dikerjakan

No Nama Task Deskripsi Status

1 Perancangan Database Membuat struktur tabel & relasi Selesai

2 Menyusun Migration CI4 Membuat file migration untuk users &
forums

Selesai

3 Menyusun Seeder Membuat data dummy awal Selesai

4 Menentukan struktur API
endpoint

Menyusun rute dasar untuk autentikasi
& forum

Selesai

5 Menyiapkan Swagger Menentukan integrasi dengan CI4 Selesai

3.2​ Detail Implementasi

a.​ Database
-- ========================
-- 1. TABEL USERS
-- ========================
CREATE TABLE users (
 user_id INT AUTO_INCREMENT PRIMARY KEY,
 nim VARCHAR(20),
 nama VARCHAR(100),
 kelas VARCHAR(20),
 semester INT,
 email VARCHAR(100) UNIQUE,
 password VARCHAR(255),
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

-- ========================
-- 2. TABEL FORUMS
-- ========================
CREATE TABLE forums (
 forum_id INT AUTO_INCREMENT PRIMARY KEY,
 admin_id INT,
 nama VARCHAR(100),
 deskripsi TEXT,
 kode_undangan VARCHAR(10) UNIQUE,
 jenis_forum ENUM('akademik', 'proyek', 'komunitas', 'lainnya') DEFAULT
'akademik',
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 FOREIGN KEY (admin_id) REFERENCES users(user_id)
);

-- ========================

-- 3. TABEL ANGGOTA_FORUM
-- ========================
CREATE TABLE anggota_forum (
 anggota_id INT AUTO_INCREMENT PRIMARY KEY,
 forum_id INT,
 user_id INT,
 allowed_upload BOOLEAN DEFAULT TRUE, -- hanya anggota & admin yg punya
izin upload
 joined_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (forum_id) REFERENCES forums(forum_id) ON DELETE CASCADE,
 FOREIGN KEY (user_id) REFERENCES users(user_id) ON DELETE CASCADE,
 UNIQUE (forum_id, user_id)
);

-- ========================
-- 4. TABEL KANBANS
-- ========================
CREATE TABLE kanbans (
 kanban_id INT AUTO_INCREMENT PRIMARY KEY,
 forum_id INT,
 judul VARCHAR(100),
 deskripsi TEXT,
 tenggat_waktu DATETIME,
 file_url VARCHAR(255),
 created_by INT,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
 FOREIGN KEY (forum_id) REFERENCES forums(forum_id) ON DELETE CASCADE,
 FOREIGN KEY (created_by) REFERENCES users(user_id)
);

-- ========================
-- 5. TABEL REMINDERS
-- ========================
CREATE TABLE reminders (
 reminder_id INT AUTO_INCREMENT PRIMARY KEY,
 kanban_id INT UNIQUE,
 user_id INT,
 title VARCHAR(100),
 waktu DATETIME,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (kanban_id) REFERENCES kanbans(kanban_id) ON DELETE CASCADE,
 FOREIGN KEY (user_id) REFERENCES users(user_id)
);

-- ========================
-- 6. TABEL DISCUSSIONS
-- ========================
CREATE TABLE discussions (
 discussion_id INT AUTO_INCREMENT PRIMARY KEY,
 forum_id INT,
 user_id INT,
 parent_id INT DEFAULT NULL,
 isi TEXT,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (forum_id) REFERENCES forums(forum_id) ON DELETE CASCADE,
 FOREIGN KEY (user_id) REFERENCES users(user_id),
 FOREIGN KEY (parent_id) REFERENCES discussions(discussion_id) ON DELETE
SET NULL
);

-- ========================
-- 7. TABEL NOTES

-- ========================
CREATE TABLE notes (
 note_id INT AUTO_INCREMENT PRIMARY KEY,
 forum_id INT,
 user_id INT,
 judul VARCHAR(100),
 kategori VARCHAR(50),
 mata_kuliah VARCHAR(100),
 deskripsi TEXT,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (forum_id) REFERENCES forums(forum_id) ON DELETE CASCADE,
 FOREIGN KEY (user_id) REFERENCES users(user_id)
);

-- ========================
-- 8. TABEL MEDIA
-- ========================
CREATE TABLE media (
 media_id INT AUTO_INCREMENT PRIMARY KEY,
 user_id INT,
 forum_id INT,
 note_id INT DEFAULT NULL,
 ref_id INT DEFAULT NULL,
 created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (user_id) REFERENCES users(user_id),
 FOREIGN KEY (forum_id) REFERENCES forums(forum_id) ON DELETE CASCADE,
 FOREIGN KEY (note_id) REFERENCES notes(note_id) ON DELETE SET NULL,
 CONSTRAINT fk_media_upload_permission
 FOREIGN KEY (user_id, forum_id)
 REFERENCES anggota_forum(user_id, forum_id)
 ON DELETE CASCADE
);

b.​ Backend/API

AuthController.php
<?php

namespace App\Controllers\API;

use App\Models\UserModel;
use App\Entities\User;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class AuthController extends BaseAPIController
{
 #[OAT\Post(
 path: "/auth/register",
 tags: ["Auth"],
 summary: "Register user",
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["nama", "email", "password"],
 properties: [
 new OAT\Property(property: "nama", type: "string"),
 new OAT\Property(property: "email", type: "string", format:
"email"),
 new OAT\Property(property: "password", type: "string", format:
"password")
]
)
),

 responses: [
 new OAT\Response(response: 201, description: "Registered"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function register()
 {
 $rules = config('Validation')->authRegister;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }

 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $model = new UserModel();

 $userData = [
 'nama' => $data['nama'] ?? null,
 'email' => $data['email'],
 'password' => password_hash($data['password'], PASSWORD_BCRYPT),
];
 $userId = $model->insert($userData, true);
 $user = $model->find($userId);

 $token = service('jwt')->issueToken($user);

 return $this->success(['token' => $token, 'user' => $user], 'Registered',
null, 201);
 }

 #[OAT\Post(
 path: "/auth/login",
 tags: ["Auth"],
 summary: "Login",
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["email", "password"],
 properties: [
 new OAT\Property(property: "email", type: "string", format:
"email"),
 new OAT\Property(property: "password", type: "string", format:
"password")
]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Logged in"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 401, description: "Unauthorized")
]
)]
 public function login()
 {
 $rules = config('Validation')->authLogin;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }

 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $email = $data['email'];
 $pass = $data['password'];

 $model = new UserModel();
 $user = $model->where('email', $email)->first();

 if (! $user || ! password_verify($pass, (string) $user->password)) {
 return $this->fail('Invalid credentials', 401);
 }

 $token = service('jwt')->issueToken($user);
 return $this->success(['token' => $token, 'user' => $user], 'Logged in');
 }

 #[OAT\Post(
 path: "/auth/logout",
 tags: ["Auth"],
 summary: "Logout (stateless)",
 security: [["bearerAuth" => []]],
 responses: [new OAT\Response(response: 200, description: "Logged out")]
)]
 public function logout()
 {
 return $this->success(['ok' => true], 'Logged out');
 }

 #[OAT\Get(
 path: "/auth/me",
 tags: ["Auth"],
 summary: "Current user",
 security: [["bearerAuth" => []]],
 responses: [
 new OAT\Response(response: 200, description: "User"),
 new OAT\Response(response: 401, description: "Unauthorized")
]
)]
 public function me()
 {
 return $this->success($this->currentUser());
 }
}

BaseAPIController.php
<?php

namespace App\Controllers\API;

use CodeIgniter\Controller;
use CodeIgniter\HTTP\ResponseInterface;
use App\Entities\User;

abstract class BaseAPIController extends Controller
{
 protected function success($data, ?string $message = null, ?array $meta =
null, int $status = 200)
 {
 $payload = ['data' => $data];
 if ($meta !== null) {
 $payload['meta'] = $meta;
 }
 if ($message !== null) {
 $payload['message'] = $message;
 }
 return $this->response->setStatusCode($status)->setJSON($payload);
 }

 protected function fail(string $message, int $code = 400)
 {
 return $this->response->setStatusCode($code)->setJSON([
 'error' => [

 'code' => $code,
 'message' => $message,
],
]);
 }

 /**
 * Get the authenticated user from the request lifecycle.
 */
 protected function currentUser(): ?User
 {
 return service('authUser')->getUser();
 }
}

DiscussionController.php
<?php

namespace App\Controllers\API;

use App\Models\DiscussionModel;
use App\Models\ForumModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class DiscussionController extends BaseAPIController
{
 #[OAT\Post(
 path: "/forums/{id}/discussions",
 tags: ["Discussions"],
 summary: "Create discussion",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(required: ["isi"], properties: [new
OAT\Property(property: "isi", type: "string")])
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function store(int $forumId)
 {
 $rules = config('Validation')->discussionStore;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $model = new DiscussionModel();
 $id = $model->insert([
 'forum_id' => $forumId,
 'user_id' => $current->user_id,
 'parent_id' => null,
 'isi' => $data['isi'],
], true);
 return $this->success($model->find($id), 'Created', null, 201);
 }

 #[OAT\Post(
 path: "/discussions/{id}/replies",

 tags: ["Discussions"],
 summary: "Reply to discussion",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(required: ["isi"], properties: [new
OAT\Property(property: "isi", type: "string")])
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function reply(int $discussionId)
 {
 $rules = config('Validation')->discussionReply;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $parent = (new DiscussionModel())->find($discussionId);
 if (! $parent) {
 return $this->fail('Discussion not found', 404);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $model = new DiscussionModel();
 $id = $model->insert([
 'forum_id' => $parent->forum_id,
 'user_id' => $current->user_id,
 'parent_id' => $discussionId,
 'isi' => $data['isi'],
], true);
 return $this->success($model->find($id), 'Created', null, 201);
 }

 #[OAT\Get(
 path: "/forums/{id}/discussions",
 tags: ["Discussions"],
 summary: "List discussions (threaded by default)",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "threaded", in: "query", required: false,
schema: new OAT\Schema(type: "boolean")),
 new OAT\Parameter(name: "q", in: "query", required: false, schema: new
OAT\Schema(type: "string")),
 new OAT\Parameter(name: "page", in: "query", required: false, schema:
new OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "per_page", in: "query", required: false,
schema: new OAT\Schema(type: "integer"))
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index(int $forumId)
 {
 $threaded = filter_var($this->request->getGet('threaded') ?? 'true',
FILTER_VALIDATE_BOOLEAN);
 $q = trim((string) ($this->request->getGet('q') ?? ''));
 $model = new DiscussionModel();
 $builder = $model->builder()->where('forum_id',
$forumId)->orderBy('created_at', 'DESC');

 if ($q !== '') {
 $builder->like('isi', $q);
 }
 if ($threaded) {
 $rows = $builder->get()->getResultArray();
 $data = service('discussionTree')->buildTree($rows);
 return $this->success($data);
 }
 $page = max(1, (int) ($this->request->getGet('page') ?? 1));
 $perPage = min(100, max(1, (int) ($this->request->getGet('per_page') ??
10)));
 $total = (clone $builder)->countAllResults(false);
 $rows = $builder->get(($page - 1) * $perPage, $perPage)->getResult();
 $meta = service('paginationSvc')->buildMeta($page, $perPage, $total);
 return $this->success($rows, null, $meta);
 }

 #[OAT\Get(
 path: "/discussions/{id}",
 tags: ["Discussions"],
 summary: "Show discussion",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "OK"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function show(int $discussionId)
 {
 $disc = (new DiscussionModel())->find($discussionId);
 if (! $disc) {
 return $this->fail('Not found', 404);
 }
 return $this->success($disc);
 }

 #[OAT\Patch(
 path: "/discussions/{id}",
 tags: ["Discussions"],
 summary: "Update discussion",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: false,
 content: new OAT\JsonContent(properties: [new OAT\Property(property:
"isi", type: "string")])
),
 responses: [
 new OAT\Response(response: 200, description: "Updated"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function update(int $discussionId)
 {
 $model = new DiscussionModel();
 $disc = $model->find($discussionId);
 if (! $disc) {
 return $this->fail('Not found', 404);
 }
 if (! $this->canManage($disc->forum_id, $disc->user_id)) {
 return $this->fail('Forbidden', 403);

 }
 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();
 $model->update($discussionId, ['isi' => $data['isi'] ?? $disc->isi]);
 return $this->success($model->find($discussionId), 'Updated');
 }

 #[OAT\Delete(
 path: "/discussions/{id}",
 tags: ["Discussions"],
 summary: "Delete discussion",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "Deleted"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function destroy(int $discussionId)
 {
 $model = new DiscussionModel();
 $disc = $model->find($discussionId);
 if (! $disc) {
 return $this->fail('Not found', 404);
 }
 if (! $this->canManage($disc->forum_id, $disc->user_id)) {
 return $this->fail('Forbidden', 403);
 }
 $model->delete($discussionId);
 return $this->success(['ok' => true], 'Deleted');
 }

 private function canManage(int $forumId, int $ownerId): bool
 {
 $current = $this->currentUser();
 if (! $current) {
 return false;
 }
 if ($ownerId === (int) $current->user_id) {
 return true;
 }
 $forum = (new ForumModel())->find($forumId);
 return $forum && (int) $forum->admin_id === (int) $current->user_id;
 }
}

ForumController.php
<?php

namespace App\Controllers\API;

use App\Models\ForumModel;
use App\Models\AnggotaForumModel;
use App\Models\KanbanModel;
use CodeIgniter\Database\BaseBuilder;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class ForumController extends BaseAPIController
{
 #[OAT\Post(
 path: "/forums",
 tags: ["Forums"],
 summary: "Create forum",

 security: [["bearerAuth" => []]],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["nama"],
 properties: [
 new OAT\Property(property: "nama", type: "string"),
 new OAT\Property(property: "deskripsi", type: "string"),
 new OAT\Property(property: "jenis_forum", type: "string", enum:
["akademik","proyek","komunitas","lainnya"]),
 new OAT\Property(property: "is_public", type: "integer", enum:
[0,1])
]
)
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 401, description: "Unauthorized")
]
)]
 public function store()
 {
 $rules = config('Validation')->forumStore;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $model = new ForumModel();

 $kode = $this->generateUniqueKode();
 $forumId = $model->insert([
 'admin_id' => $current->user_id,
 'nama' => $data['nama'],
 'deskripsi' => $data['deskripsi'] ?? null,
 'jenis_forum' => $data['jenis_forum'] ?? 'akademik',
 'is_public' => (int) ($data['is_public'] ?? 0),
 'kode_undangan'=> $kode,
], true);
 $forum = $model->find($forumId);

 // auto-join admin
 (new AnggotaForumModel())->insert([
 'forum_id' => $forumId,
 'user_id' => $current->user_id,
 'allowed_upload' => 1,
]);

 return $this->success($forum, 'Created', null, 201);
 }

 #[OAT\Get(
 path: "/forums",
 tags: ["Forums"],
 summary: "List forums",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "scope", in: "query", required: false, schema:
new OAT\Schema(type: "string", enum: ["mine","public","all"])),
 new OAT\Parameter(name: "q", in: "query", required: false, schema: new
OAT\Schema(type: "string")),
 new OAT\Parameter(name: "sort", in: "query", required: false, schema:
new OAT\Schema(type: "string", enum: ["created_at","nama"])),

 new OAT\Parameter(name: "page", in: "query", required: false, schema:
new OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "per_page", in: "query", required: false,
schema: new OAT\Schema(type: "integer"))
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index()
 {
 $current = $this->currentUser();
 $scope = $this->request->getGet('scope') ?? 'all';
 $q = trim((string) ($this->request->getGet('q') ?? ''));
 $sort = $this->request->getGet('sort') ?? 'created_at';
 $page = max(1, (int) ($this->request->getGet('page') ?? 1));
 $perPage = min(100, max(1, (int) ($this->request->getGet('per_page')
?? 10)));

 $builder = (new ForumModel())->builder();
 if ($scope === 'mine') {
 $builder->join('anggota_forum af', 'af.forum_id = forums.forum_id',
'inner')
 ->where('af.user_id', $current->user_id);
 } elseif ($scope === 'public') {
 $builder->where('is_public', 1);
 }
 if ($q !== '') {
 $builder->groupStart()
 ->like('nama', $q)
 ->orLike('deskripsi', $q)
 ->groupEnd();
 }
 $allowedSort = ['created_at', 'nama'];
 if (! in_array($sort, $allowedSort, true)) {
 $sort = 'created_at';
 }
 $builder->orderBy($sort, 'DESC');

 // Pagination
 $total = (clone $builder)->countAllResults(false);
 $results = $builder->get(($page - 1) * $perPage, $perPage)->getResult();

 $meta = service('paginationSvc')->buildMeta($page, $perPage, $total);
 return $this->success($results, null, $meta);
 }

 #[OAT\Get(
 path: "/forums/recommended",
 tags: ["Forums"],
 summary: "Recommended public forums",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "limit", in: "query", required: false, schema:
new OAT\Schema(type: "integer"))
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function recommended()
 {
 $limit = min(50, max(1, (int) ($this->request->getGet('limit') ??
10)));
 $builder = (new ForumModel())->builder()->where('is_public',
1)->orderBy('created_at', 'DESC');
 $data = $builder->get($limit)->getResult();
 return $this->success($data);

 }

 #[OAT\Get(
 path: "/forums/{id}",
 tags: ["Forums"],
 summary: "Show forum",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 responses: [
 new OAT\Response(response: 200, description: "OK"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function show(int $forumId)
 {
 $forum = (new ForumModel())->find($forumId);
 if (! $forum) {
 return $this->fail('Forum not found', 404);
 }
 $membersCount = (new AnggotaForumModel())->where('forum_id',
$forumId)->countAllResults();
 $tasksCount = (new KanbanModel())->where('forum_id',
$forumId)->countAllResults();

 return $this->success([
 'forum' => $forum,
 'counts' => [
 'members' => $membersCount,
 'tasks' => $tasksCount,
],
]);
 }

 #[OAT\Patch(
 path: "/forums/{id}",
 tags: ["Forums"],
 summary: "Update forum (admin)",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 requestBody: new OAT\RequestBody(
 required: false,
 content: new OAT\JsonContent(
 properties: [
 new OAT\Property(property: "nama", type: "string"),
 new OAT\Property(property: "deskripsi", type: "string"),
 new OAT\Property(property: "jenis_forum", type: "string"),
 new OAT\Property(property: "is_public", type: "integer", enum:
[0,1]),
]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Updated"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function update(int $forumId)

 {
 $rules = config('Validation')->forumUpdate;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();
 $patch = array_intersect_key($data, array_flip(['nama', 'deskripsi',
'jenis_forum', 'is_public']));
 $model = new ForumModel();
 $model->update($forumId, $patch);
 $forum = $model->find($forumId);
 return $this->success($forum, 'Updated');
 }

 #[OAT\Delete(
 path: "/forums/{id}",
 tags: ["Forums"],
 summary: "Delete forum (admin)",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 responses: [new OAT\Response(response: 200, description: "Deleted")]
)]
 public function destroy(int $forumId)
 {
 $model = new ForumModel();
 $model->delete($forumId);
 return $this->success(['ok' => true], 'Deleted');
 }

 private function generateUniqueKode(): string
 {
 $model = new ForumModel();
 for ($i = 0; $i < 5; $i++) {
 $len = random_int(6, 8);
 $code = substr(str_shuffle('ABCDEFGHJKLMNPQRSTUVWXYZ23456789'), 0,
$len);
 if (! $model->where('kode_undangan', $code)->first()) {
 return $code;
 }
 }
 return bin2hex(random_bytes(4));
 }
}

ForumMemberController.php
<?php

namespace App\Controllers\API;

use App\Models\ForumModel;
use App\Models\AnggotaForumModel;
use App\Models\UserModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class ForumMemberController extends BaseAPIController
{
 #[OAT\Post(

 path: "/forums/{id}/join",
 tags: ["Forums"],
 summary: "Join forum by kode_undangan",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["kode_undangan"],
 properties: [new OAT\Property(property: "kode_undangan", type:
"string")]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Joined"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function join(int $forumId)
 {
 $rules = config('Validation')->forumJoin;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $kode = $data['kode_undangan'];
 $forum = (new ForumModel())->find($forumId);
 if (! $forum) {
 return $this->fail('Forum not found', 404);
 }
 if ($forum->kode_undangan !== $kode) {
 return $this->fail('Invalid invitation code', 400);
 }
 $user = $this->currentUser();
 $model = new AnggotaForumModel();
 $exists = $model->where(['forum_id' => $forumId, 'user_id' =>
$user->user_id])->first();
 if (! $exists) {
 $model->insert([
 'forum_id' => $forumId,
 'user_id' => $user->user_id,
 'allowed_upload' => 0,
]);
 }
 return $this->success(['ok' => true], 'Joined');
 }

 #[OAT\Post(
 path: "/forums/{id}/leave",
 tags: ["Forums"],
 summary: "Leave forum",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "Left"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function leave(int $forumId)
 {

 $current = $this->currentUser();
 $forum = (new ForumModel())->find($forumId);
 if (! $forum) {
 return $this->fail('Forum not found', 404);
 }
 if ((int) $forum->admin_id === (int) $current->user_id) {
 return $this->fail('Admin cannot leave the forum', 403);
 }
 $model = new AnggotaForumModel();
 $model->where(['forum_id' => $forumId, 'user_id' =>
$current->user_id])->delete();
 return $this->success(['ok' => true], 'Left forum');
 }

 #[OAT\Get(
 path: "/forums/{id}/members",
 tags: ["Forums"],
 summary: "List forum members",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function members(int $forumId)
 {
 $builder = (new AnggotaForumModel())->builder()
 ->select('u.user_id, u.nama, u.email, af.allowed_upload, af.joined_at')
 ->from('anggota_forum af')
 ->join('users u', 'u.user_id = af.user_id', 'inner')
 ->where('af.forum_id', $forumId)
 ->orderBy('u.nama', 'ASC');
 $rows = $builder->get()->getResultArray();
 return $this->success($rows);
 }

 #[OAT\Patch(
 path: "/forums/{id}/members/{userId}",
 tags: ["Forums"],
 summary: "Update member allowed_upload (admin)",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "userId", in: "path", required: true, schema:
new OAT\Schema(type: "integer")),
],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["allowed_upload"],
 properties: [new OAT\Property(property: "allowed_upload", type:
"integer", enum: [0,1])]
)
),
 responses: [new OAT\Response(response: 200, description: "Updated")]
)]
 public function update(int $forumId, int $userId)
 {
 $rules = config('Validation')->memberUpdate;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();

 (new AnggotaForumModel())->where(['forum_id' => $forumId, 'user_id' =>
$userId])
 ->set(['allowed_upload' => (int) $data['allowed_upload']])
 ->update();

 return $this->success(['ok' => true], 'Updated');
 }
}

MediaController.php
<?php

namespace App\Controllers\API;

use App\Models\MediaModel;
use App\Models\ForumModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class MediaController extends BaseAPIController
{
 #[OAT\Post(
 path: "/media",
 tags: ["Media"],
 summary: "Upload media",
 security: [["bearerAuth" => []]],
 requestBody: new OAT\RequestBody(
 required: true,
 content: [
 new OAT\MediaType(
 mediaType: "multipart/form-data",
 schema: new OAT\Schema(
 type: "object",
 required: ["forum_id"],
 properties: [
 new OAT\Property(property: "forum_id", type: "integer"),
 new OAT\Property(property: "note_id", type: "integer"),
 new OAT\Property(property: "ref_id", type: "integer"),
 new OAT\Property(property: "file", type: "string", format:
"binary")
]
)
),
 new OAT\MediaType(
 mediaType: "application/json",
 schema: new OAT\Schema(
 type: "object",
 required: ["forum_id","file_url"],
 properties: [
 new OAT\Property(property: "forum_id", type: "integer"),
 new OAT\Property(property: "file_url", type: "string", format:
"uri"),
 new OAT\Property(property: "note_id", type: "integer"),
 new OAT\Property(property: "ref_id", type: "integer")
]
)
)
]
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]

 public function store()
 {
 // Validate via PHP side to allow optional note/ref
 $forumId = (int) ($this->request->getPost('forum_id') ??
$this->request->getJSON(true)['forum_id'] ?? 0);
 if ($forumId <= 0) {
 return $this->fail('forum_id is required', 400);
 }
 $current = $this->currentUser();
 $file = $this->request->getFile('file');
 $fileUrl = null;
 if ($file && $file->isValid()) {
 $fileUrl = $this->moveUploadedFile($file, $forumId);
 } else {
 $body = $this->request->getJSON(true) ?? $this->request->getPost();
 $fileUrl = $body['file_url'] ?? null;
 if (! $fileUrl) {
 return $this->fail('No file or file_url provided', 400);
 }
 }

 $noteId = (int) ($this->request->getPost('note_id') ??
$this->request->getJSON(true)['note_id'] ?? 0);
 $refId = (int) ($this->request->getPost('ref_id') ??
$this->request->getJSON(true)['ref_id'] ?? 0);

 $id = (new MediaModel())->insert([
 'user_id' => $current->user_id,
 'forum_id' => $forumId,
 'note_id' => $noteId ?: null,
 'ref_id' => $refId ?: null,
 'file_url' => $fileUrl,
], true);

 return $this->success((new MediaModel())->find($id), 'Created', null,
201);
 }

 #[OAT\Get(
 path: "/forums/{id}/media",
 tags: ["Media"],
 summary: "List forum media",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "note_id", in: "query", required: false,
schema: new OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "ref_id", in: "query", required: false, schema:
new OAT\Schema(type: "integer"))
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index(int $forumId)
 {
 $noteId = $this->request->getGet('note_id');
 $refId = $this->request->getGet('ref_id');
 $builder = (new MediaModel())->builder()->where('forum_id',
$forumId)->orderBy('created_at', 'DESC');
 if ($noteId) {
 $builder->where('note_id', (int) $noteId);
 }
 if ($refId) {
 $builder->where('ref_id', (int) $refId);

 }
 $data = $builder->get()->getResult();
 return $this->success($data);
 }

 #[OAT\Get(
 path: "/media/{id}",
 tags: ["Media"],
 summary: "Show media",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "OK"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function show(int $mediaId)
 {
 $media = (new MediaModel())->find($mediaId);
 if (! $media) {
 return $this->fail('Not found', 404);
 }
 return $this->success($media);
 }

 #[OAT\Delete(
 path: "/media/{id}",
 tags: ["Media"],
 summary: "Delete media",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "Deleted"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function destroy(int $mediaId)
 {
 $model = new MediaModel();
 $media = $model->find($mediaId);
 if (! $media) {
 return $this->fail('Not found', 404);
 }
 $current = $this->currentUser();
 $forum = (new ForumModel())->find($media->forum_id);
 $isOwner = (int) $media->user_id === (int) $current->user_id;
 $isAdmin = $forum && (int) $forum->admin_id === (int) $current->user_id;
 if (! $isOwner && ! $isAdmin) {
 return $this->fail('Forbidden', 403);
 }
 $model->delete($mediaId);
 return $this->success(['ok' => true], 'Deleted');
 }

 private function moveUploadedFile(\CodeIgniter\HTTP\Files\UploadedFile
$file, int $forumId): string
 {
 $sanitized = $this->sanitizeFilename($file->getClientName());
 $subdir = 'uploads/forums/' . $forumId . '/' . gmdate('Y/m');
 $targetDir = FCPATH . $subdir;
 if (! is_dir($targetDir)) {
 mkdir($targetDir, 0775, true);

 }
 $newName = uniqid('', true) . '_' . $sanitized;
 $file->move($targetDir, $newName, true);
 return base_url($subdir . '/' . $newName);
 }

 private function sanitizeFilename(string $name): string
 {
 $name = preg_replace('/[^A-Za-z0-9._-]+/', '_', $name);
 return trim($name, '_');
 }
}

NoteController.php
<?php

namespace App\Controllers\API;

use App\Models\NoteModel;
use App\Models\ForumModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class NoteController extends BaseAPIController
{
 #[OAT\Post(
 path: "/forums/{id}/notes",
 tags: ["Notes"],
 summary: "Create note",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["judul"],
 properties: [
 new OAT\Property(property: "judul", type: "string"),
 new OAT\Property(property: "kategori", type: "string"),
 new OAT\Property(property: "mata_kuliah", type: "string"),
 new OAT\Property(property: "deskripsi", type: "string")
]
)
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function store(int $forumId)
 {
 $rules = config('Validation')->noteStore;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $model = new NoteModel();
 $id = $model->insert([

 'forum_id' => $forumId,
 'user_id' => $current->user_id,
 'judul' => $data['judul'],
 'kategori' => $data['kategori'] ?? null,
 'mata_kuliah' => $data['mata_kuliah'] ?? null,
 'deskripsi' => $data['deskripsi'] ?? null,
], true);
 return $this->success($model->find($id), 'Created', null, 201);
 }

 #[OAT\Get(
 path: "/forums/{id}/notes",
 tags: ["Notes"],
 summary: "List notes",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "kategori", in: "query", required: false,
schema: new OAT\Schema(type: "string")),
 new OAT\Parameter(name: "mata_kuliah", in: "query", required: false,
schema: new OAT\Schema(type: "string")),
 new OAT\Parameter(name: "q", in: "query", required: false, schema: new
OAT\Schema(type: "string")),
 new OAT\Parameter(name: "page", in: "query", required: false, schema:
new OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "per_page", in: "query", required: false,
schema: new OAT\Schema(type: "integer")),
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index(int $forumId)
 {
 $q = trim((string) ($this->request->getGet('q') ?? ''));
 $kategori = $this->request->getGet('kategori');
 $mataKuliah = $this->request->getGet('mata_kuliah');
 $page = max(1, (int) ($this->request->getGet('page') ?? 1));
 $perPage = min(100, max(1, (int) ($this->request->getGet('per_page')
?? 10)));

 $builder = (new NoteModel())->builder()->where('forum_id', $forumId);
 if ($kategori) {
 $builder->where('kategori', $kategori);
 }
 if ($mataKuliah) {
 $builder->where('mata_kuliah', $mataKuliah);
 }
 if ($q !== '') {
 $builder->groupStart()
 ->like('judul', $q)
 ->orLike('deskripsi', $q)
 ->groupEnd();
 }
 $builder->orderBy('created_at', 'DESC');
 $total = (clone $builder)->countAllResults(false);
 $data = $builder->get(($page - 1) * $perPage, $perPage)->getResult();
 $meta = service('paginationSvc')->buildMeta($page, $perPage, $total);
 return $this->success($data, null, $meta);
 }

 #[OAT\Get(
 path: "/notes/{id}",
 tags: ["Notes"],
 summary: "Show note",

 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "OK"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function show(int $noteId)
 {
 $note = (new NoteModel())->find($noteId);
 if (! $note) {
 return $this->fail('Not found', 404);
 }
 return $this->success($note);
 }

 #[OAT\Patch(
 path: "/notes/{id}",
 tags: ["Notes"],
 summary: "Update note",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: false,
 content: new OAT\JsonContent(
 properties: [
 new OAT\Property(property: "judul", type: "string"),
 new OAT\Property(property: "kategori", type: "string"),
 new OAT\Property(property: "mata_kuliah", type: "string"),
 new OAT\Property(property: "deskripsi", type: "string")
]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Updated"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function update(int $noteId)
 {
 $model = new NoteModel();
 $note = $model->find($noteId);
 if (! $note) {
 return $this->fail('Not found', 404);
 }
 if (! $this->canManage($note->forum_id, $note->user_id)) {
 return $this->fail('Forbidden', 403);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();
 $patch = array_intersect_key($data, array_flip(['judul', 'kategori',
'mata_kuliah', 'deskripsi']));
 $model->update($noteId, $patch);
 return $this->success($model->find($noteId), 'Updated');
 }

 #[OAT\Delete(
 path: "/notes/{id}",
 tags: ["Notes"],
 summary: "Delete note",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],

 responses: [
 new OAT\Response(response: 200, description: "Deleted"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function destroy(int $noteId)
 {
 $model = new NoteModel();
 $note = $model->find($noteId);
 if (! $note) {
 return $this->fail('Not found', 404);
 }
 if (! $this->canManage($note->forum_id, $note->user_id)) {
 return $this->fail('Forbidden', 403);
 }
 $model->delete($noteId);
 return $this->success(['ok' => true], 'Deleted');
 }

 private function canManage(int $forumId, int $ownerId): bool
 {
 $current = $this->currentUser();
 if (! $current) {
 return false;
 }
 if ($ownerId === (int) $current->user_id) {
 return true;
 }
 $forum = (new ForumModel())->find($forumId);
 return $forum && (int) $forum->admin_id === (int) $current->user_id;
 }
}

NotificationController.php
<?php

namespace App\Controllers\API;

use App\Models\AnggotaForumModel;
use App\Models\KanbanModel;
use App\Models\DiscussionModel;
use CodeIgniter\Database\BaseConnection;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class NotificationController extends BaseAPIController
{
 #[OAT\Get(
 path: "/notifications",
 tags: ["Notifications"],
 summary: "Get forum notifications summary",
 security: [["bearerAuth" => []]],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index()
 {
 $db = db_connect();
 $current = $this->currentUser();

 $forums = (new AnggotaForumModel())->builder()
 ->select('forum_id')
 ->where('user_id', $current->user_id)
 ->get()->getResultArray();

 $forumIds = array_map(static fn($r) => (int) $r['forum_id'], $forums);
 $summary = [];
 foreach ($forumIds as $fid) {
 $lastSeen = $this->getLastSeen($db, $current->user_id, $fid);
 $newTasks = (new KanbanModel())->where('forum_id', $fid)
 ->where('created_at >', $lastSeen)->countAllResults();
 $newDiscussions = (new DiscussionModel())->where('forum_id', $fid)
 ->where('created_at >', $lastSeen)->countAllResults();
 $summary[] = [
 'forum_id' => $fid,
 'new_tasks' => $newTasks,
 'new_discussions' => $newDiscussions,
];
 }
 return $this->success(['forums' => $summary]);
 }

 private function getLastSeen(BaseConnection $db, int $userId, int
$forumId): string
 {
 $row = $db->table('user_forum_seen')
 ->where(['user_id' => $userId, 'forum_id' => $forumId])
 ->get()->getRowArray();
 return $row['last_seen_at'] ?? '1970-01-01 00:00:00';
 }
}

ReminderController.php
<?php

namespace App\Controllers\API;

use App\Models\ReminderModel;
use App\Models\KanbanModel;
use App\Models\ForumModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class ReminderController extends BaseAPIController
{
 #[OAT\Post(
 path: "/tasks/{id}/reminder",
 tags: ["Reminders"],
 summary: "Create reminder for task",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["title","waktu"],
 properties: [
 new OAT\Property(property: "title", type: "string"),
 new OAT\Property(property: "waktu", type: "string", format:
"date-time")
]
)
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 409, description: "Conflict")
]
)]

 public function store(int $taskId)
 {
 $rules = config('Validation')->reminderStore;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $task = (new KanbanModel())->find($taskId);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 $model = new ReminderModel();
 $existing = $model->where('kanban_id', $taskId)->first();
 if ($existing) {
 return $this->fail('Reminder already exists for this task', 409);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $reminderId = $model->insert([
 'kanban_id' => $taskId,
 'user_id' => $current->user_id,
 'title' => $data['title'],
 'waktu' => $data['waktu'],
], true);
 return $this->success($model->find($reminderId), 'Created', null, 201);
 }

 #[OAT\Get(
 path: "/reminders",
 tags: ["Reminders"],
 summary: "List my reminders",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "upcoming", in: "query", required:
false, schema: new OAT\Schema(type: "boolean"))],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index()
 {
 $current = $this->currentUser();
 $upcoming = filter_var($this->request->getGet('upcoming') ?? 'true',
FILTER_VALIDATE_BOOLEAN);
 $builder = (new ReminderModel())->builder()->where('user_id',
$current->user_id);
 if ($upcoming) {
 $builder->where('waktu >=', gmdate('Y-m-d H:i:s'));
 }
 $builder->orderBy('waktu', 'ASC');
 $data = $builder->get()->getResult();
 return $this->success($data);
 }

 #[OAT\Delete(
 path: "/reminders/{id}",
 tags: ["Reminders"],
 summary: "Delete reminder",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "Deleted"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function destroy(int $reminderId)
 {

 $model = new ReminderModel();
 $reminder = $model->find($reminderId);
 if (! $reminder) {
 return $this->fail('Reminder not found', 404);
 }
 $task = (new KanbanModel())->find($reminder->kanban_id);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 if (! $this->canManageTask((int) $task->forum_id, (int)
$task->created_by) && (int) $reminder->user_id !== (int)
$this->currentUser()->user_id) {
 return $this->fail('Forbidden', 403);
 }
 $model->delete($reminderId);
 return $this->success(['ok' => true], 'Deleted');
 }

 private function canManageTask(int $forumId, int $createdBy): bool
 {
 $current = $this->currentUser();
 if (! $current) {
 return false;
 }
 if ($createdBy === (int) $current->user_id) {
 return true;
 }
 $forum = (new ForumModel())->find($forumId);
 return $forum && (int) $forum->admin_id === (int) $current->user_id;
 }
}

SearchController.php
<?php

namespace App\Controllers\API;

use App\Models\ForumModel;
use App\Models\KanbanModel;
use App\Models\NoteModel;
use App\Models\DiscussionModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class SearchController extends BaseAPIController
{
 #[OAT\Get(
 path: "/search",
 tags: ["Search"],
 summary: "Search across entities",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "scope", in: "query", required: false, schema:
new OAT\Schema(type: "string", enum:
["forums","tasks","notes","discussions","all"])),
 new OAT\Parameter(name: "q", in: "query", required: true, schema: new
OAT\Schema(type: "string"))
],
 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index()
 {
 $scope = $this->request->getGet('scope') ?? 'all';
 $q = trim((string) ($this->request->getGet('q') ?? ''));

 if ($q === '') {
 return $this->success([]);
 }
 $results = [];
 if ($scope === 'forums' || $scope === 'all') {
 $rows = (new ForumModel())->builder()
 ->groupStart()->like('nama', $q)->orLike('deskripsi',
$q)->groupEnd()
 ->limit(20)->get()->getResultArray();
 foreach ($rows as $r) {
 $r['type'] = 'forum';
 $results[] = $r;
 }
 }
 if ($scope === 'tasks' || $scope === 'all') {
 $rows = (new KanbanModel())->builder()
 ->groupStart()->like('judul', $q)->orLike('deskripsi',
$q)->groupEnd()
 ->limit(20)->get()->getResultArray();
 foreach ($rows as $r) {
 $r['type'] = 'task';
 $results[] = $r;
 }
 }
 if ($scope === 'notes' || $scope === 'all') {
 $rows = (new NoteModel())->builder()
 ->groupStart()->like('judul', $q)->orLike('deskripsi',
$q)->groupEnd()
 ->limit(20)->get()->getResultArray();
 foreach ($rows as $r) {
 $r['type'] = 'note';
 $results[] = $r;
 }
 }
 if ($scope === 'discussions' || $scope === 'all') {
 $rows = (new DiscussionModel())->builder()
 ->like('isi', $q)
 ->limit(20)->get()->getResultArray();
 foreach ($rows as $r) {
 $r['type'] = 'discussion';
 $results[] = $r;
 }
 }
 return $this->success($results);
 }
}

TaskController.php
<?php

namespace App\Controllers\API;

use App\Models\KanbanModel;
use App\Models\ForumModel;
use App\Models\MediaModel;
use CodeIgniter\Files\File;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class TaskController extends BaseAPIController
{
 #[OAT\Post(
 path: "/forums/{id}/tasks",
 tags: ["Tasks"],

 summary: "Create task in forum",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: new OAT\JsonContent(
 required: ["judul"],
 properties: [
 new OAT\Property(property: "judul", type: "string"),
 new OAT\Property(property: "deskripsi", type: "string"),
 new OAT\Property(property: "tenggat_waktu", type: "string", format:
"date-time"),
 new OAT\Property(property: "file_url", type: "string", format:
"uri")
]
)
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function store(int $forumId)
 {
 $rules = config('Validation')->taskStore;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getPost();
 $current = $this->currentUser();
 $model = new KanbanModel();
 $taskId = $model->insert([
 'forum_id' => $forumId,
 'judul' => $data['judul'],
 'deskripsi' => $data['deskripsi'] ?? null,
 'tenggat_waktu' => $data['tenggat_waktu'] ?? null,
 'file_url' => $data['file_url'] ?? null,
 'status' => 'todo',
 'created_by' => $current->user_id,
], true);
 $task = $model->find($taskId);
 return $this->success($task, 'Created', null, 201);
 }

 #[OAT\Get(
 path: "/forums/{id}/tasks",
 tags: ["Tasks"],
 summary: "List tasks in forum",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "status", in: "query", required: false, schema:
new OAT\Schema(type: "string", enum: ["todo","doing","done"])),
 new OAT\Parameter(name: "q", in: "query", required: false, schema: new
OAT\Schema(type: "string")),
 new OAT\Parameter(name: "sort", in: "query", required: false, schema:
new OAT\Schema(type: "string", enum: ["deadline","created_at"])),
 new OAT\Parameter(name: "page", in: "query", required: false, schema:
new OAT\Schema(type: "integer")),
 new OAT\Parameter(name: "per_page", in: "query", required: false,
schema: new OAT\Schema(type: "integer"))
],

 responses: [new OAT\Response(response: 200, description: "OK")]
)]
 public function index(int $forumId)
 {
 $status = $this->request->getGet('status');
 $q = trim((string) ($this->request->getGet('q') ?? ''));
 $sort = $this->request->getGet('sort') ?? 'created_at';
 $page = max(1, (int) ($this->request->getGet('page') ?? 1));
 $perPage = min(100, max(1, (int) ($this->request->getGet('per_page') ??
10)));

 $builder = (new KanbanModel())->builder()->where('forum_id', $forumId);
 if (in_array($status, ['todo', 'doing', 'done'], true)) {
 $builder->where('status', $status);
 }
 if ($q !== '') {
 $builder->groupStart()
 ->like('judul', $q)
 ->orLike('deskripsi', $q)
 ->groupEnd();
 }
 $sortMap = ['deadline' => 'tenggat_waktu', 'created_at' => 'created_at'];
 $orderBy = $sortMap[$sort] ?? 'created_at';
 $builder->orderBy($orderBy, 'DESC');

 $total = (clone $builder)->countAllResults(false);
 $data = $builder->get(($page - 1) * $perPage, $perPage)->getResult();
 $meta = service('paginationSvc')->buildMeta($page, $perPage, $total);
 return $this->success($data, null, $meta);
 }

 #[OAT\Get(
 path: "/tasks/{id}",
 tags: ["Tasks"],
 summary: "Show task",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "OK"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function show(int $taskId)
 {
 $task = (new KanbanModel())->find($taskId);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 return $this->success($task);
 }

 #[OAT\Patch(
 path: "/tasks/{id}",
 tags: ["Tasks"],
 summary: "Update task",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: false,
 content: new OAT\JsonContent(
 properties: [
 new OAT\Property(property: "judul", type: "string"),

 new OAT\Property(property: "deskripsi", type: "string"),
 new OAT\Property(property: "tenggat_waktu", type: "string", format:
"date-time"),
 new OAT\Property(property: "status", type: "string", enum:
["todo","doing","done"]),
 new OAT\Property(property: "file_url", type: "string", format:
"uri")
]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Updated"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function update(int $taskId)
 {
 $rules = config('Validation')->taskUpdate;
 if (! $this->validate($rules)) {
 return $this->fail(implode('; ', $this->validator->getErrors()), 400);
 }
 $model = new KanbanModel();
 $task = $model->find($taskId);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 if (! $this->canManageTask($task->forum_id, $task->created_by)) {
 return $this->fail('Forbidden', 403);
 }

 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();
 $patch = array_intersect_key($data, array_flip(['judul', 'deskripsi',
'tenggat_waktu', 'status', 'file_url']));
 $model->update($taskId, $patch);
 return $this->success($model->find($taskId), 'Updated');
 }

 #[OAT\Delete(
 path: "/tasks/{id}",
 tags: ["Tasks"],
 summary: "Delete task",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 responses: [
 new OAT\Response(response: 200, description: "Deleted"),
 new OAT\Response(response: 404, description: "Not found")
]
)]
 public function destroy(int $taskId)
 {
 $model = new KanbanModel();
 $task = $model->find($taskId);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 if (! $this->canManageTask($task->forum_id, $task->created_by)) {
 return $this->fail('Forbidden', 403);
 }
 $model->delete($taskId);
 return $this->success(['ok' => true], 'Deleted');
 }

 #[OAT\Post(
 path: "/tasks/{id}/attachments",
 tags: ["Tasks"],
 summary: "Attach file or link to task",
 security: [["bearerAuth" => []]],
 parameters: [new OAT\Parameter(name: "id", in: "path", required: true,
schema: new OAT\Schema(type: "integer"))],
 requestBody: new OAT\RequestBody(
 required: true,
 content: [
 new OAT\MediaType(
 mediaType: "multipart/form-data",
 schema: new OAT\Schema(
 type: "object",
 properties: [
 new OAT\Property(property: "file", type: "string", format:
"binary"),
 new OAT\Property(property: "file_url", type: "string", format:
"uri")
]
)
),
 new OAT\MediaType(
 mediaType: "application/json",
 schema: new OAT\Schema(
 type: "object",
 properties: [new OAT\Property(property: "file_url", type:
"string", format: "uri")]
)
)
]
),
 responses: [
 new OAT\Response(response: 201, description: "Created"),
 new OAT\Response(response: 400, description: "Bad Request")
]
)]
 public function attach(int $taskId)
 {
 $task = (new KanbanModel())->find($taskId);
 if (! $task) {
 return $this->fail('Task not found', 404);
 }
 $current = $this->currentUser();
 $mediaModel = new MediaModel();

 $file = $this->request->getFile('file');
 $fileUrl = null;
 if ($file && $file->isValid()) {
 $fileUrl = $this->moveUploadedFile($file, (int) $task->forum_id);
 } else {
 $body = $this->request->getJSON(true) ?? $this->request->getPost();
 $fileUrl = $body['file_url'] ?? null;
 if (! $fileUrl) {
 return $this->fail('No file or file_url provided', 400);
 }
 }

 $mediaId = $mediaModel->insert([
 'user_id' => $current->user_id,
 'forum_id' => $task->forum_id,
 'ref_id' => $taskId,
 'file_url' => $fileUrl,
], true);

 return $this->success($mediaModel->find($mediaId), 'Attached', null,
201);
 }

 private function canManageTask(int $forumId, int $createdBy): bool
 {
 $current = $this->currentUser();
 if (! $current) {
 return false;
 }
 if ((int) $createdBy === (int) $current->user_id) {
 return true;
 }
 $forum = (new ForumModel())->find($forumId);
 return $forum && (int) $forum->admin_id === (int) $current->user_id;
 }

 private function moveUploadedFile(\CodeIgniter\HTTP\Files\UploadedFile
$file, int $forumId): string
 {
 $sanitized = $this->sanitizeFilename($file->getClientName());
 $subdir = 'uploads/forums/' . $forumId . '/' . gmdate('Y/m');
 $targetDir = FCPATH . $subdir;
 if (! is_dir($targetDir)) {
 mkdir($targetDir, 0775, true);
 }
 $newName = uniqid('', true) . '_' . $sanitized;
 $file->move($targetDir, $newName, true);
 return base_url($subdir . '/' . $newName);
 }

 private function sanitizeFilename(string $name): string
 {
 $name = preg_replace('/[^A-Za-z0-9._-]+/', '_', $name);
 return trim($name, '_');
 }
}

UserController.php
<?php

namespace App\Controllers\API;

use App\Models\UserModel;
use OpenApi\Annotations as OA;
use OpenApi\Attributes as OAT;

class UserController extends BaseAPIController
{
 #[OAT\Get(
 path: "/users/{id}",
 tags: ["Users"],
 summary: "Show user",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 responses: [
 new OAT\Response(response: 200, description: "User"),
 new OAT\Response(response: 404, description: "Not found")
]
)]

 public function show(int $id)
 {
 $user = (new UserModel())->find($id);
 if (! $user) {
 return $this->fail('User not found', 404);
 }
 return $this->success($user);
 }

 #[OAT\Put(
 path: "/users/{id}",
 tags: ["Users"],
 summary: "Update user (self only)",
 security: [["bearerAuth" => []]],
 parameters: [
 new OAT\Parameter(name: "id", in: "path", required: true, schema: new
OAT\Schema(type: "integer"))
],
 requestBody: new OAT\RequestBody(
 required: false,
 content: new OAT\JsonContent(
 properties: [
 new OAT\Property(property: "nim", type: "string"),
 new OAT\Property(property: "nama", type: "string"),
 new OAT\Property(property: "kelas", type: "string"),
 new OAT\Property(property: "semester", type: "integer"),
 new OAT\Property(property: "password", type: "string", format:
"password"),
]
)
),
 responses: [
 new OAT\Response(response: 200, description: "Updated"),
 new OAT\Response(response: 400, description: "Bad Request"),
 new OAT\Response(response: 403, description: "Forbidden")
]
)]
 public function update(int $id)
 {
 $current = $this->currentUser();
 if (! $current || (int) $current->user_id !== (int) $id) {
 return $this->fail('You can only update your own profile', 403);
 }
 $data = $this->request->getJSON(true) ?? $this->request->getRawInput();
 $patch = array_intersect_key($data, array_flip(['nim', 'nama', 'kelas',
'semester']));
 if (isset($data['password']) && $data['password']) {
 $patch['password'] = password_hash($data['password'], PASSWORD_BCRYPT);
 }
 $model = new UserModel();
 $model->update($id, $patch);
 $user = $model->find($id);
 return $this->success($user, 'Updated');
 }
}

c.​ Screenshot Hasil

d.​ Kendala dan Solusi

Kendala Solusi Hasil

Swagger belum native di CI4 Integrasi library pihak ketiga Dokumentasi bisa
dibuat

Kode undangan harus unique Menggunakan hash + upper
random

Berjalan stabil

Struktur endpoint awal masih
besar

Menyusun template prompt di
Cursor

Endpoint lebih
konsisten

BAB IV: PENGUJIAN

4.1​ Test Case yang Dilakukan

a.​ Authentications Tests

No Yang
Diuji

Input Output
Diharapkan

Status

1 Registrasi
user baru

POST /auth/register

{nama: "Alice", email:
"alice@example.com",
password: "password123"}

Status 201,
response berisi
token

✅

2 Login
user

POST /auth/login

{email:
"alice@example.com",
password: "password123"}

Status 200,
response berisi
token

✅

3 Get user
info (me)

GET /auth/me

Header: Authorization:
Bearer {token}

Status 200,
response berisi
data user
dengan email
yang sesuai

✅

b.​ Form Tests

No Yang Diuji Input Output
Diharapkan

Status

4 Membuat
forum baru

POST /forums

{nama: "Private Forum",
deskripsi: "Test",
jenis_forum:
"akademik", is_public:
0}

Status 201,
forum berhasil
dibuat

✅

5 List forum
dengan
scope
"mine"

GET /forums?scope=mine Status 200, total
forum >= 1

✅

6 List forum
dengan
scope
"public"

GET
/forums?scope=public

Status 200, total
forum = 0
(karena forum
private)

✅

7 Join forum
via kode
undangan

POST /forums/{id}/join

{kode_undangan:
"{kode}"}

Status 200,
user berhasil
join forum

✅

8 Non-admin
tidak bisa
update
forum

PATCH /forums/{id}

{nama: "New Name"}

User: non-admin

Status 403,
Forbidden

✅

c.​ Task (Kanban) Tests

No Yang Diuji Input Output
Diharapkan

Status

9 Membuat task
baru

POST
/forums/{id}/tasks

{judul: "First Task",
deskripsi: "Do
something"}

Status 201,
task berhasil
dibuat

✅

10 Update status
task

PATCH /tasks/{id}

{status: "doing"}
Status 200,
status task
berhasil
diupdate

✅

11 Membuat
reminder
untuk task

POST
/tasks/{id}/reminder

{title: "Ping", waktu:
"{datetime}"}

Status 201,
reminder
berhasil dibuat

✅

12 Membuat
reminder
kedua untuk
task yang
sama

POST
/tasks/{id}/reminder

{title: "Ping again",
waktu: "{datetime}"}

Status 409,
Conflict (task
sudah punya
reminder)

✅

13 Non-member
tidak bisa
membuat task
di forum
private

POST
/forums/{id}/tasks

{judul: "X"}

User: non-member

Status 403,
Forbidden

✅

d.​ Discussion Tests

No Yang Diuji Input Output
Diharapkan

Status

14 Membuat
diskusi
baru

POST
/forums/{id}/discussions

{isi: "Hello"}

Status 201,
diskusi
berhasil dibuat

✅

15 Membalas
diskusi

POST
/discussions/{id}/replies

{isi: "Reply"}

Status 201,
reply berhasil
dibuat

✅

16 List diskusi
dengan
threaded
view

GET
/forums/{id}/discussions?
threaded=true

Status 200,
response
berisi diskusi
dengan
children
(replies)

✅

e.​ Notes Tests

No Yang Diuji Input Output
Diharapkan

Status

17 Membuat
catatan baru

POST /forums/{id}/notes

{judul: "Lecture 1",
kategori: "math",
mata_kuliah: "algebra"}

Status 201,
catatan
berhasil dibuat

✅

18 Filter catatan
berdasarkan
kategori

GET
/forums/{id}/notes?kate
gori=math

Status 200,
total catatan
>= 1

✅

19 Update
catatan

PATCH /notes/{id}

{judul: "Lecture 1
updated"}

Status 200,
catatan
berhasil
diupdate

✅

20 Hapus catatan DELETE /notes/{id} Status 200,
catatan
berhasil
dihapus

✅

f.​ Media Tests

No Yang
Diuji

Input Output
Diharapkan

Status

21 Upload
media
dengan
file_url

POST /media

{forum_id: {id}, file_url:
"https://example.com/file.pd
f"}

Status 201,
media
berhasil
diupload

✅

22 User lain
tidak bisa
hapus
media
milik
admin

DELETE /media/{id}

User: bukan pemilik media
Status 403,
Forbidden

✅

4.2​ Bug dan Perbaikan

●​ Bug: Migration gagal karena ENUM tidak dikenali
●​ Perbaikan: Mengganti ENUM dengan VARCHAR + validation

BAB V: KESIMPULAN

5.1​ Kesimpulan

Pada proyek Stugether, saya berperan sebagai backend developer dan database designer.
Saya merancang struktur database, menyiapkan migration, menyusun endpoint, hingga
menentukan rencana dokumentasi API. Hasil yang dicapai berupa fondasi sistem yang siap
dikembangkan ke fitur-fitur lanjutan.

5.2​ Saran

●​ Menambahkan tabel ForumMembers
●​ Menambahkan fitur tugas & file sharing
●​ Membangun UI frontend dan mobile app

DAFTAR PUSTAKA

Dokumentasi CodeIgniter 4

Dokumentasi MySQL

OpenAPI / Swagger Docs

Chat dan diskusi perancangan pada proyek

ChatGPT

Cursor AI

LAMPIRAN

Lampiran A: Source Code

https://github.com/faridreaming/stugether

Lampiran B: Dokumentasi Database

https://github.com/faridreaming/stugether

Lampiran C: Screenshot Tambahan

	Judul Proyek: Sistem Manajemen Database Stugether (Kolaborasi Tugas Kelompok, Berbagi Catatan Dan Forum Diskusi + Reminder)
	
	Mata Kuliah: Manajemen Basis Data Client Server
	Dosen Pengampu: Donny Sanjaya, M.Kom.
	LAPORAN KONTRIBUSI INDIVIDU
	Nama Anggota: Muhammad Farid Yamin
	NIM: 2305181063
	Kelompok: 2
	Program Studi: Teknologi Rekayasa Perangkat Lunak
	Politeknik Negeri Medan
	2025
	BAB I: PENDAHULUAN
	1.1​Deskripsi Proyek
	a.​Nama Sistem
	b.​Tujuan Sistem
	c.​Ruang Lingkup

	1.2​Peran dan Tanggung Jawab Individu
	a.​Posisi Dalam Tim
	b.​Deskripsi Tugas yang Diampu
	c.​Tools dan Teknologi

	BAB II: DESAIN SISTEM
	2.1​Gambaran Umum Sistem
	2.2​Desain yang Menjadi Tanggung Jawab
	a.​ERD (Entity Relationship Diagram)
	b.​Struktur Tabel Database
	c.​Relasi Antar Tabel
	d.​Arsitektur Sistem
	e.​Struktur API Endpoint
	f.​Alur Logika Bisnis
	●​Validasi input
	●​Generate kode undangan otomatis
	●​Cek duplikasi email
	●​Relasi admin_id ke tabel forum

	BAB III: IMPLEMENTASI
	3.1​Daftar Pekerjaan yang Dikerjakan
	3.2​Detail Implementasi
	a.​Database
	b.​Backend/API
	c.​Screenshot Hasil
	d.​Kendala dan Solusi

	BAB IV: PENGUJIAN
	4.1​Test Case yang Dilakukan
	a.​Authentications Tests
	b.​Form Tests
	c.​Task (Kanban) Tests
	d.​Discussion Tests
	e.​Notes Tests
	f.​Media Tests

	4.2​Bug dan Perbaikan
	●​Bug: Migration gagal karena ENUM tidak dikenali
	●​Perbaikan: Mengganti ENUM dengan VARCHAR + validation

	BAB V: KESIMPULAN
	5.1​ Kesimpulan
	5.2​Saran

	DAFTAR PUSTAKA
	LAMPIRAN
	Lampiran A: Source Code
	Lampiran B: Dokumentasi Database
	Lampiran C: Screenshot Tambahan

